

UK Atomic Energy Authority
Culham Campus
Abingdon
Oxfordshire
OX14 3DB

Background

Undergrad courses

- Total of 300 CATs (with 90 at L6) Eng, Wales, NI
 - o 3000 hours of notional learning time, with 900 at L6
- Total of 480 SCQFs (with 60 at L9 Scottish levels) Scotland
- Defining a fusion undergrad course is not necessary as not making partnership investments directly for this, however will be useful to define number of notional learning hours of fusion relevant/specific content in undergrad courses if presented as part of the additional benefits of a partnership case.

Stand Alone Master's courses

- Total of 180 CATS (with 150 at L7)
- 1800 hours of learning effort or notional learning time, with 1500 at L7
- C.36% is a research project = 648 hours
- Modules are c. 100-300 hours with 200 hours being typical

Integrated Master's courses

- Total of 480 CATS (with 120 at L7)
- 4800 hours of learning effort or notional learning time, with 1200 at L7

Fusion Master's course

A stand-alone master's course is c.1800 hours of learning

Fusion-specific learning, is defined as learning (either taught or self-directed) which directly addresses fusion science and technology, using examples specific to a fusion device (of any fusion approach) and explicitly referencing the relevance and application of the learning to the fusion industry.

Fusion-relevant learning, is defined as learning (either taught or self-directed) which does not explicitly reference a fusion science or technology, but could be argued as being beneficial to the fusion industry

A non-exhaustive list of examples are provided below:

Examples of fusion-specific learning	Examples of fusion-relevant learning
Material properties in a fusion environment	Generic principals of material properties
Hydrogen-specific chemistry	Chemical processes
Isotope separation technology	Theoretical physics
Plasma physics	Modelling techniques
Modelling of fusion-specific applications	Systems Integration
Fusion power-plant systems integration	Magnet science and technology
Fusion technology approaches (MCF, ICF etc)	AI and computing

UK Atomic Energy Authority Culham Campus Abingdon Oxfordshire OX14 3DB

Superconducting magnets for plasma	Risk analysis
confinement	Nuclear fission
Al applications for fusion-models and power-	Engineering (all disciplines)
plant control	
Radiological waste-management for fusion-	
relevant materials	
Risk management for integrated systems/fusion	
power plants	
Magnetohydrodynamics	
Thermodynamics of a fusion power plant	

Every hour of fusion-specific learning scores 1

Every hour of fusion-relevant learning scores 0.5

For a Master's to be recognised, it must have a score of 800 (with fusion-specific learning making up at least 400 of this score)

Eg.

- 400 hours fusion-specific + 800 hours fusion-relevant + 600 hours other
- 500 hours fusion-specific + 600 hours fusion-relevant + 700 hours other
- 600 hours fusion-specific + 400 hours fusion-relevant + 800 hours other

Where courses contain a research project that may, or may not, be fusion specific due to the logistical nature of how these are arranged, these project hours will be calculated as fusion-relevant.

Where courses contain a dissertation element (typically 600 hours), these hours will be calculated as fusion-relevant.